Search results for "Sistemes informàtics"
showing 3 items of 3 documents
An Scalable matrix computing unit architecture for FPGA and SCUMO user design interface
2019
High dimensional matrix algebra is essential in numerous signal processing and machine learning algorithms. This work describes a scalable square matrix-computing unit designed on the basis of circulant matrices. It optimizes data flow for the computation of any sequence of matrix operations removing the need for data movement for intermediate results, together with the individual matrix operations’ performance in direct or transposed form (the transpose matrix operation only requires a data addressing modification). The allowed matrix operations are: matrix-by-matrix addition, subtraction, dot product and multiplication, matrix-by-vector multiplication, and matrix by scalar multiplication.…
Applying data driven decision making to rank vocational and educational training programs with TOPSIS
2021
Abstract In this paper we present a multi-criteria classification of Vocational and Educational Programs in Extremadura (Spain) during the period 2009–2016. This ranking has been carried out through the integration into a complete database of the detailed information of individuals finishing such studies together with their labor data. The multicriteria method used is TOPSIS together with a new decision support method for assessing the influence of each criterion and its dependence on the weights assigned to them. This new method is based on a worst-best case scenario analysis and it is compared to a well known global sensitivity analysis technique based on the Pearson's correlation ratio.
A Novel Systolic Parallel Hardware Architecture for the FPGA Acceleration of Feedforward Neural Networks
2019
New chips for machine learning applications appear, they are tuned for a specific topology, being efficient by using highly parallel designs at the cost of high power or large complex devices. However, the computational demands of deep neural networks require flexible and efficient hardware architectures able to fit different applications, neural network types, number of inputs, outputs, layers, and units in each layer, making the migration from software to hardware easy. This paper describes novel hardware implementing any feedforward neural network (FFNN): multilayer perceptron, autoencoder, and logistic regression. The architecture admits an arbitrary input and output number, units in la…